Thermodynamica bij evenwichtsreacties

Stel je het volgende chemische systeem voor:

N2 + 3H2 2NH3     (ΔH < 0 en ΔS < 0)

Zo'n chemisch systeem betekent bijvoorbeeld dat stikstof, waterstof en ammoniak zich samen, al reagerend, bevinden in een cilinder onder een zuiger.
Denk vervolgens aan de formule:

ΔG = ΔH - TΔS

De heenreactie (de vorming van ammoniak) is exotherm (ΔH < 0) en dat garandeert een zekere spontaniteit van de reactie naar rechts.
Aan de andere kant echter: de terugreactie houdt toename van de entropie in
(het aantal deeltjes neemt toe, verdubbelt in het voorbeeld, en dus de mate van wanorde wordt groter bij reactie van rechts naar links en dat garandeert ook een zekere spontaniteit voor de terugreactie. (ΔS neemt dus toe bij de terugreactie en neemt af bij de heenreactie)
Dus in het voorbeeld hebben beide reacties, de heen- en de terug-, een zekere sponaniteit om verschillende redenen.

In de formule ΔG = ΔH - TΔS, toegepast voor de heenreactie, heeft zowel ΔH als ΔS een negatieve waarde.
Wiskundig gezien betekent dit dat ΔH de waarde van ΔG negatiever maakt, terwijl de term -TΔS de waarde van ΔG positiever zal maken.

Het kan voorkomen dat de twee termen (ΔH= TΔS) gelijk aan elkaar zijn zijn, afhankelijk van de omstandigheden.

We raken hier aan een thermodynamisch geheim:
  1. Op het moment dat de waarde van ΔG gelijk wordt aan 0, wordt het chemisch evenwicht bereikt.
  2. Als ΔG > 0 , dus als de vrije energie van het systeem toeneemt, domineert de terugreactie (verplaatsing van het evenwicht naar links).
  3. Als ΔG < 0 , dus als de vrije energie van het systeem afneemt, domineert de heenreactie (verplaatsing van het evenwicht naar rechts).
Je ziet: wil je het scheikundig evenwicht goed begrijpen dan moet je het begrip "entropie" kennen.